3.24.94 \(\int \frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{(2+3 x)^3} \, dx\) [2394]

Optimal. Leaf size=144 \[ \frac {19}{18} \sqrt {1-2 x} \sqrt {3+5 x}-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}+\frac {118}{27} \sqrt {\frac {2}{5}} \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )-\frac {155}{108} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \]

[Out]

118/135*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-155/108*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7
^(1/2)-1/6*(1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^2+5/4*(1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)+19/18*(1-2*x)^(1/2)*(
3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {99, 154, 159, 163, 56, 222, 95, 210} \begin {gather*} \frac {118}{27} \sqrt {\frac {2}{5}} \text {ArcSin}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )-\frac {155}{108} \sqrt {7} \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )-\frac {\sqrt {5 x+3} (1-2 x)^{5/2}}{6 (3 x+2)^2}+\frac {5 \sqrt {5 x+3} (1-2 x)^{3/2}}{4 (3 x+2)}+\frac {19}{18} \sqrt {5 x+3} \sqrt {1-2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x)^3,x]

[Out]

(19*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/18 - ((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(6*(2 + 3*x)^2) + (5*(1 - 2*x)^(3/2)*Sqr
t[3 + 5*x])/(4*(2 + 3*x)) + (118*Sqrt[2/5]*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/27 - (155*Sqrt[7]*ArcTan[Sqrt[1 -
 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/108

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && ILtQ[m, -1] && GtQ[n, 0]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{(2+3 x)^3} \, dx &=-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {1}{6} \int \frac {\left (-\frac {25}{2}-30 x\right ) (1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx\\ &=-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}-\frac {1}{18} \int \frac {\left (-\frac {915}{4}-285 x\right ) \sqrt {1-2 x}}{(2+3 x) \sqrt {3+5 x}} \, dx\\ &=\frac {19}{18} \sqrt {1-2 x} \sqrt {3+5 x}-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}-\frac {1}{270} \int \frac {-\frac {14865}{4}-3540 x}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=\frac {19}{18} \sqrt {1-2 x} \sqrt {3+5 x}-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}+\frac {118}{27} \int \frac {1}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx+\frac {1085}{216} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=\frac {19}{18} \sqrt {1-2 x} \sqrt {3+5 x}-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}+\frac {1085}{108} \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )+\frac {236 \text {Subst}\left (\int \frac {1}{\sqrt {11-2 x^2}} \, dx,x,\sqrt {3+5 x}\right )}{27 \sqrt {5}}\\ &=\frac {19}{18} \sqrt {1-2 x} \sqrt {3+5 x}-\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{6 (2+3 x)^2}+\frac {5 (1-2 x)^{3/2} \sqrt {3+5 x}}{4 (2+3 x)}+\frac {118}{27} \sqrt {\frac {2}{5}} \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )-\frac {155}{108} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 108, normalized size = 0.75 \begin {gather*} \frac {1}{540} \left (\frac {15 \sqrt {1-2 x} \left (708+2485 x+2319 x^2+240 x^3\right )}{(2+3 x)^2 \sqrt {3+5 x}}-472 \sqrt {10} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{2}-5 x}}{\sqrt {3+5 x}}\right )-775 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x)^3,x]

[Out]

((15*Sqrt[1 - 2*x]*(708 + 2485*x + 2319*x^2 + 240*x^3))/((2 + 3*x)^2*Sqrt[3 + 5*x]) - 472*Sqrt[10]*ArcTan[Sqrt
[5/2 - 5*x]/Sqrt[3 + 5*x]] - 775*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/540

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 208, normalized size = 1.44

method result size
risch \(-\frac {\sqrt {3+5 x}\, \left (-1+2 x \right ) \left (48 x^{2}+435 x +236\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{36 \left (2+3 x \right )^{2} \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right )}\, \sqrt {1-2 x}}-\frac {\left (-\frac {59 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )}{135}-\frac {155 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right )}{216}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(138\)
default \(\frac {\sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (4248 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) x^{2}+6975 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+5664 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) x +9300 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +1440 x^{2} \sqrt {-10 x^{2}-x +3}+1888 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )+3100 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+13050 x \sqrt {-10 x^{2}-x +3}+7080 \sqrt {-10 x^{2}-x +3}\right )}{1080 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )^{2}}\) \(208\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^3,x,method=_RETURNVERBOSE)

[Out]

1/1080*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(4248*10^(1/2)*arcsin(20/11*x+1/11)*x^2+6975*7^(1/2)*arctan(1/14*(37*x+20)*
7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+5664*10^(1/2)*arcsin(20/11*x+1/11)*x+9300*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/
2)/(-10*x^2-x+3)^(1/2))*x+1440*x^2*(-10*x^2-x+3)^(1/2)+1888*10^(1/2)*arcsin(20/11*x+1/11)+3100*7^(1/2)*arctan(
1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+13050*x*(-10*x^2-x+3)^(1/2)+7080*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3
)^(1/2)/(2+3*x)^2

________________________________________________________________________________________

Maxima [A]
time = 0.69, size = 101, normalized size = 0.70 \begin {gather*} \frac {59}{135} \, \sqrt {10} \arcsin \left (\frac {20}{11} \, x + \frac {1}{11}\right ) + \frac {155}{216} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {13}{9} \, \sqrt {-10 \, x^{2} - x + 3} + \frac {7 \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{6 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} - \frac {49 \, \sqrt {-10 \, x^{2} - x + 3}}{36 \, {\left (3 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="maxima")

[Out]

59/135*sqrt(10)*arcsin(20/11*x + 1/11) + 155/216*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 1
3/9*sqrt(-10*x^2 - x + 3) + 7/6*(-10*x^2 - x + 3)^(3/2)/(9*x^2 + 12*x + 4) - 49/36*sqrt(-10*x^2 - x + 3)/(3*x
+ 2)

________________________________________________________________________________________

Fricas [A]
time = 0.51, size = 147, normalized size = 1.02 \begin {gather*} -\frac {472 \, \sqrt {5} \sqrt {2} {\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac {\sqrt {5} \sqrt {2} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) + 775 \, \sqrt {7} {\left (9 \, x^{2} + 12 \, x + 4\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 30 \, {\left (48 \, x^{2} + 435 \, x + 236\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{1080 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="fricas")

[Out]

-1/1080*(472*sqrt(5)*sqrt(2)*(9*x^2 + 12*x + 4)*arctan(1/20*sqrt(5)*sqrt(2)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x
 + 1)/(10*x^2 + x - 3)) + 775*sqrt(7)*(9*x^2 + 12*x + 4)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2
*x + 1)/(10*x^2 + x - 3)) - 30*(48*x^2 + 435*x + 236)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (1 - 2 x\right )^{\frac {5}{2}} \sqrt {5 x + 3}}{\left (3 x + 2\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**(1/2)/(2+3*x)**3,x)

[Out]

Integral((1 - 2*x)**(5/2)*sqrt(5*x + 3)/(3*x + 2)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 338 vs. \(2 (106) = 212\).
time = 0.78, size = 338, normalized size = 2.35 \begin {gather*} \frac {31}{432} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {59}{135} \, \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {4}{135} \, \sqrt {5} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - \frac {77 \, \sqrt {10} {\left (17 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} - \frac {13720 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} + \frac {54880 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{54 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^3,x, algorithm="giac")

[Out]

31/432*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/
(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 59/135*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((sq
rt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 4/135*sqrt(5)*sqrt
(5*x + 3)*sqrt(-10*x + 5) - 77/54*sqrt(10)*(17*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*
x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 - 13720*(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) + 54
880*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) -
 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (1-2\,x\right )}^{5/2}\,\sqrt {5\,x+3}}{{\left (3\,x+2\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(5/2)*(5*x + 3)^(1/2))/(3*x + 2)^3,x)

[Out]

int(((1 - 2*x)^(5/2)*(5*x + 3)^(1/2))/(3*x + 2)^3, x)

________________________________________________________________________________________